skip to main content


Search for: All records

Creators/Authors contains: "Su, J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    Drilling vibrations can cause inefficient drilling and accelerated damage to system components. Therefore, reducing or eliminating such vibrations is a major focus area for natural gas and geothermal drilling applications. One particularly important vibration mode is stick-slip. Stick-slip occurs when the bottom-hole angular velocity starts oscillating while the top hole angular velocity remains relatively constant. This not only causes poor drilling, it is also difficult to detect using surface sensors. In this work, we describe the development and testing of a benchtop drilling system for studying stick-slip dynamics and mitigation. We show how this system can produce stick-slip oscillations. Next, we use this data to formulate a data-driven rock-bit interaction model. This model can be combined with linear systems analysis to predict stick-slip and understand mitigation methods. We describe out instrumentation that enables closed-loop control under simulated communications constraints. We conclude by providing preliminary experimental data on bench-level stick-slip.

    INTRODUCTION

    Exploration via autonomous drilling processes for geothermal resources is an important focus area for drilling research. However, to fully realize the clean-energy promise of geothermal energy, key challenges still need to be resolved.

    Issues arising in the drilling process often originate from a drillstring's increased susceptibility to vibrational oscillations as depths increase. Some examples of drilling vibrations include stick-slip (Navarro-Lopez and Suarez, 2004), bit-bounce (Spanos et al., 1995), and whirl (Jansen, 1991). Torsional oscillations are the focus of this work.

    Torsional vibrations result in a destructive phenomenon known as stick-slip. Initiated at the bit-rock surface, the drillstring bit experiences large angular velocity oscillations not seen at the surface (Pavone and Desplans, 1994; Besselink et al., 2011; Kessai et al., 2020). Stick-slip results in premature bit wear and drillstring fracture.

    Stick-slip is a fundamentally nonlinear and unpredictable phenomena. Stick-slip results from the combination of bit-rock interactions and drillstring compliance. As a result, there is a key need for experimental studies of stick-slip dynamics and mitigation.

     
    more » « less
    Free, publicly-accessible full text available June 25, 2024
  2. Aims. On the Sun, jets in light bridges (LBs) are frequently observed with high-resolution instruments. The respective roles played by convection and the magnetic field in triggering such jets are not yet clear. Methods. We report a small fan-shaped jet along a LB observed by the 1.6m Goode Solar Telescope (GST) with the TiO Broadband Filter Imager (BFI), the Visible Imaging Spectrometer (VIS) in H α , and the Near-InfraRed Imaging Spectropolarimeter (NIRIS), along with the Stokes parameters. The high spatial and temporal resolution of those instruments allowed us to analyze the features identified during the jet event. By constructing the H α Dopplergrams, we found that the plasma is first moving upward, whereas during the second phase of the jet, the plasma is flowing back. Working with time slice diagrams, we investigated the propagation-projected speed of the fan and its bright base. Results. The fan-shaped jet developed within a few minutes, with diverging beams. At its base, a bright point was slipping along the LB and ultimately invaded the umbra of the sunspot. The H α profiles of the bright points enhanced the intensity in the wings, similarly to the case of Ellerman bombs. Co-temporally, the extreme ultraviolet (EUV) brightenings developed at the front of the dark material jet and moved at the same speed as the fan, leading us to propose that the fan-shaped jet material compressed and heated the ambient plasma at its extremities in the corona. Conclusions. Our multi-wavelength analysis indicates that the fan-shaped jet could result from magnetic reconnection across the highly diverging field low in the chromosphere, leading to an apparent slipping motion of the jet material along the LB. However, we did not find any opposite magnetic polarity at the jet base, as would typically be expected in such a configuration. We therefore discuss other plausible physical mechanisms, based on waves and convection, that may have triggered the event. 
    more » « less
  3. Accurate detection of abnormal behavior can help improve public safety. In this work, a 3D convolutional neural network (CNN) is implemented to detect violence captured by surveillance cameras. A comprehensive study of model hyper-parameter tuning is addressed to show competitive violence detection results using a general action recognition CNN without modifying the original architecture. Experimental results on three publicly available benchmark datasets show that the proposed method outperforms other sophisticated techniques designed specifically to detect violence in videos. Our analysis further indicates that reasonable network parameter adjustments can be an effective mechanism to guide the design of computer vision models in abnormal human behavior detection. 
    more » « less
  4. null (Ed.)
    Context. The carbon monoxide (CO) molecular line at around 46655 Å in solar infrared spectra is often used to investigate the dynamic behavior of the cold heart of the solar atmosphere, i.e., sunspot oscillation, especially at the sunspot umbra. Aims. We investigated sunspot oscillation at Doppler velocities of the CO 7-6 R67 and 3-2 R14 lines that were measured by the Cryogenic Infrared Spectrograph (CYRA), as well as the line profile of Mg  II k line that was detected by the Interface Region Imaging Spectrograph (IRIS). Methods. A single Gaussian function is applied to each CO line profile to extract the line shift, while the moment analysis method is used for the Mg  II k line. Then the sunspot oscillation can be found in the time–distance image of Doppler velocities, and the quasi-periodicity at the sunspot umbra are determined from the wavelet power spectrum. Finally, the cross-correlation method is used to analyze the phase relation between different atmospheric levels. Results. At the sunspot umbra, a periodicity of roughly 5 min is detected at the Doppler velocity range of the CO 7-6 R67 line that formed in the photosphere, while a periodicity of around 3 min is discovered at the Doppler velocities of CO 3-2 R14 and Mg  II k lines that formed in the upper photosphere or the temperature minimum region and the chromosphere. A time delay of about 2 min is measured between the strong CO 3-2 R14 line and the Mg  II k line. Conclusions. Based on the spectroscopic observations from the CYRA and IRIS, the 3 min sunspot oscillation can be spatially resolved in the Doppler shifts. It may come from the upper photosphere or the temperature minimum region and then propagate to the chromosphere, which might be regarded as a propagating slow magnetoacoustic wave. 
    more » « less
  5. Liu, W. ; Wang, Y. ; Guo, B. ; Tang, X. ; Zeng, S. (Ed.)
    The 19 F( p , αγ ) 16 O reaction is of crucial importance for Galactic 19 F abundances and CNO cycle loss in first generation Population III stars. Due to its extremely small cross sections, the 19 F( p , αγ ) 16 O reaction has not been measured in the low energy part of the Gamow window(70-200 keV). As a day-one campaign, the experiment was performed under the extremely low cosmicray-induced background environment of the China JinPing Underground Laboratory(CJPL), one of the deepest underground laboratories in the world. The γ -ray yields were measured over E c . m . =72.4–344 keV, covering the full Gamow window for the first time. The direct experimental data will help people to expound the fluorine over-abundances, energy generation, as well as heavy-element nuclosynthesis scenario in asymptotic giant branch (AGB) stars, with the astrophysical model on the firm ground. 
    more » « less
  6. Liu, W. ; Wang, Y. ; Guo, B. ; Tang, X. ; Zeng, S. (Ed.)
    Experimental studies on astrophysical reactions involving radioactive isotopes (RI) often accompany technical challenges. Studies on such nuclear reactions have been conducted at the low-energy RI beam separator CRIB, operated by Center for Nuclear Study, the University of Tokyo. We discuss two cases of astrophysical reaction studies at CRIB; one is for the 7 Be+ n reactions which may affect the primordial 7 Li abundance in the Big-Bang nucleosynthesis, and the other is for the 22 Mg( α , p ) reaction relevantin X-raybursts. 
    more » « less